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Abstract— This thesis targets a method of diagnosing 

behaviours in photovoltaic (PV) systems using artificial 

intelligence technique. It uses a known model, the one diode 

and five parameters, and simulates the panel as set of solar 

cells, in order to represent mismatch faults in the panel. This 

simulation model is employed to create a database of 

characteristic curves that include the response under 

standard condition, but also two faulty conditions: short 

circuited cells and partial shading. From each curve, a few 

key informations are extracted: the voltage at maximum 

power point, the current at maximum power point, the panel 

temperature and the irradiance. These informations are 

used as inputs for training an artificial neural network 

(ANN) to classify the original PV panel condition. Applying 

normalization to the inputs increased the convergence and 

classification of the ANN. The trained ANN was tested with 

real outdoor measurements of a PV panel under all 

described conditions. The results showed an accuracy of 

95% in the detection of a faulty condition and an accuracy 

of 73% in the diagnosis of the behaviour. Post conclusion 

several recommendations are made to improve and develop 

this method of diagnosis. 

 
Index Terms— Failure diagnosis, Photovoltaic systems, 

Mismatch faults, artificial neural networks 

 
I. INTRODUCTION 

 
Along the years there has been a shift of paradigms in 

ways of producing energy, relocating the non-renewable 

fonts of energy to renewables. Solar energy has seen 

increased investment in the last few years. It has some 

unique perks, installation in almost every place due to its 

flexibility in size, and it is flexible in power sizing, noise-

free [1]. A decrease in photovoltaic panels and equipment 

costs, special remunerations to renewable energies, more 

efficient panels all brought investment to this technology. 

Some disadvantages persist being availability one of the 

main problems. With all the developments made in new 

photovoltaic panels, the efficiency of converting energy 

has increased. However, these were not tested in real 

conditions, only in ideal ones and not for an extended 

period of such as their lifespan (25 years). These require a 

continuous operation to keep availability and compete 

with other forms of producing energy. When a fault occurs 

in a system, less energy is produced. Some faults may even 

damage the panels permanently, and all these flaws reduce 

the income. Also, there may be abnormal behaviour which 

is only temporary; however, if not detected, can lead to 

underperformance and in the future can develop into a 

fault. To maintain the performance, to the maximum, 

monitoring of the system is required [2].   

Every system now and in the last few years has a digital 

inverter making it simple to collect the electrical 

parameters. Panels change their behaviour with irradiance 

and temperature as such these will also enter in the fault 

detection method to be developed. Both are critical in 

determining variations in power delivered by the panels. 

Collecting these weather parameters may resort to weather 

data servers, depending on the country, or to sensors 

installed near the system. Collecting electrical parameters 

and weather data over long periods requires storage and 

analysis of the data. To determine if the system is working 

as it should a data processing method will compare typical 

values of power to the ones observed. Even though 

processes like these exist they prove not very effective. In 

the detection of fault, the methods are more developed and 

prove to be more efficient, however in diagnosis there are 

still many nuances and details that are not detected and 

prove hard to pinpoint.  

In this thesis, a method of detection and diagnosis is 

proposed. It monitors the electrical parameters (voltage, 

current) and in case the output power is not in the expected 

level, it will determine the more probable fault. In order to 

develop this method, a model capable of simulating 

standard and faulty behaviours in a PV array is used. The 

values obtained are used for training of an artificial neural 

network (ANN) to identify and classify the faulty 

behaviours in a photovoltaic system. 

The method proposed should be able to determine if the 

system, knowing its topology and specifications, has faults, 

temporary abnormal behaviour or is working as intended. 

If the system is faulty, the approach will provide a 

probability of which fault may have occurred. 
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II. I-V CURVES 

 
A usual way of analyzing the behaviour of a photovoltaic 

system is to trace its I-V curve. From this curve, three 

significant points are retrieved and identified, the short 

circuit current (Isc), the open circuit voltage (Voc) and the 

maximum power point (Vmpp, Impp). Figure 1 gives an 

example of an I-V curve with these points. There are two 

factors that influence the I-V curve, the temperature and 

the irradiance, meaning for each irradiance and 

temperature there will be a different I-V curve. 

 
Figure 1 -  I-V curve with the most important parameters: Isc, 

Impp, Voc, Vmpp, PT, Pmpp [3] 

 
III. ARTIFICIAL NEURAL NETWORKS AND PV 

APPLICATION 

 
An artificial neural network can be described as a 

massively parallel combination of simple processing units 

which can acquire knowledge from environment through 

a learning process and store it in its connections [4]. From 

inputs and outputs gathered it can create a mathematical 

model which can classify new inputs into known outputs. 

Papers have already started to introduce artificial neural 

networks to fault prediction methods in photovoltaic 

systems. In [5] the authors explore the utilization of this 

tool to build a detection network. Evaluation of the ANN’s 

performance is done using the mean square error (MSE). 

Their system is composed by a photovoltaic panel 

connected to a DC/DC boost converter with P&O 

algorithm for maximum power point tracker (MPPT) 

control. In this study five faults were tested, demonstrated 

in Table 1. It was subdivided in normal operation, one 

inverse module where the current passes through the 

bypass diode, two inversed modules, partial shadow in 

two or three modules and intense shadow effect. To 

construct the artificial neural network, they used a Matlab 

based model and configured the inputs as voltage and 

power of the PV system, the targets were set as the codes 

shown in Table 1. Data set for this problem was split into 

two subsets, 70% was used to train the gradient and to 

readjust the bias and weights. The other 30% were 

samples to validate the model. MSE allowed for a more 

accurate test of the model as it utilized as an error the 

difference between the targets and the outputs obtained in 

the training process. A normal measure to apply to these 

types of networks. 

 
Table 1 - Classification of PV array faults 

 
 

Another type of fault detection using ANN is proposed in 

[6]. First simulations were performed based on the system 

to identify normal operation and define a threshold limit 

for it. After simulations and already an established set of 

faults, starts the first part of the schematic designed by the 

authors. Values are compared with simulations to detect if 

the threshold limits, previously stated, are in check or not. 

Then it leads, based on the previous identification, to an 

attribute’s selection. This was defined in the simulations, 

where from the study of the characteristics of the system a 

relation could be made with the electric parameters. The 

attributes can relate to the number of faults and their type 

of flaw. Moving further, knowing the attributes, the authors 

differentiated faults with two algorithms, number one 

isolating the faults when they have different combinations. 

Here is where the simulated and measured are calculated, 

and their relative difference is compared with threshold 

values. All of them are determined by the measurement 

noise and the model’s uncertainty. Then the second 

algorithm distinguishes faults that have the same attributes. 

It uses an ANN to choose which fault is affecting the 

system. 

In this thesis it is sought to simulate chosen faults, 

especially mismatch, and create a database from that. Then 

applying ANNs, such as previous works stated, and 

determine if the process is reliable and can be implemented 

in PV systems. 

 
IV. SIMULATION MODEL 

 
The model developed by Eduardo Sarquis [7], was chosen 

to create a database with standard behaviour and abnormal 

behaviours. This model uses the same methodology of the 

one diode and five parameter model to represent the 

equivalent solar cell circuit. However instead of having a 

single equivalent circuit it represents the panel as strings of 

cells and each of those cells has its own equivalent circuit. 
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It allows for a better simulation of mismatch faults. The 

basic model for the equivalent cell circuit is the California 

energy commission (CEC) model, a variation of the one 

diode and five parameters model [8]. From equation (1) 

the parameters can be obtained. 

Where Iph is the photodiode current, Is is the saturation 

current, n is the ideality factor, Vt is the thermal voltage. 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 (𝑒
𝑉+𝐼∙𝑅𝑠
𝑛∙𝑉𝑡 − 1) −

𝑉 + 𝐼 ∙ 𝑅𝑠

𝑅𝑠ℎ

(1) 

 

However, CEC uses another parameter, adjust, to adapt 

the temperature coefficient of the short circuit (𝜇𝐼𝑠𝑐) and 

open circuit voltage (𝛽𝑉𝑜𝑐). Both equations are presented 

in (2,3). 

 

𝜇𝐼𝑠𝑐 = 𝛼𝑠𝑐,𝑟𝑒𝑓 (1 −
𝑎𝑑𝑗𝑢𝑠𝑡

100
) (2) 

 

 

𝛽𝑉𝑜𝑐 = 𝛽𝑜𝑐,𝑟𝑒𝑓 (1 +
𝑎𝑑𝑗𝑢𝑠𝑡

100
) (3) 

 

At the website [9] is available a database of photovoltaic 

panels parameters (Rs,ref, Rsh,ref, n, Is, Iph, adjust) at STC 

[10]. These parameters can be applied for each cell and 

their respective condition. Then the simulation model will 

run and determine the state of the system. 

 
V. EXPERIMENTAL PROCEDURE 

 
An experimental procedure for analysis of the I-V 

characteristic curve of healthy and damaged solar cells in 

PV panels was carried out, these are presented below in 

Figure 2. In Figure 3, Figure 4, Figure 5, respectively 

broken cell, broken glass and healthy panel cell, are 

represented the I-V curves obtained for each radiation 

(230, 400, 600, 800, 1000 W/m2), where each colour is 

bond to a radiation value. It is shown all the ten tests in 

each radiation, creating a cloud of results for all I-V 

curves. These tests were run to understand the 

characteristics of the I-V curves. It determined which 

variables were essential for the creation of the database. 

Also, from the results it was possible to comprehend the 

difficulty in evaluating the consequences of the broken 

cell and broken glass effect in the system electrical 

parameters. Going further, the plots referring to the 

experimental procedure will be using the healthy panel. 

The basic unit defined in the model was tested and 

produced similar results to the experimental, proceeding 

with an experiment on the whole panel. The same 

experiment as the one done for the cell was applied to the 

whole panel. However, it was done outdoors. 

 

 
Figure 2 - The two panels tested in the laboratory: left side 

(broken glass and a broken cell), right side (healthy panel) 

 

 
Figure 3 - Broken cell I-V curve for the following irradiances: 

230 (blue), 400 (red), 600 (cyan), 800 (yellow), 1000 (green) 

[W/m2] 

 

- 

Figure 4 - Broken glass I-V curve for the following irradiances: 

230 (blue), 400 (red), 600 (cyan), 800 (yellow), 1000 (green) 

[W/m2] 
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Figure 5 - Healthy panel I-V curve for the following 

irradiances: 230 (blue), 400 (red), 600 (cyan), 800 (yellow), 

1000 (green) [W/m2] 

 
VI. DATABASE CONSTRUCTION 

 
To create a database, an understanding of the faults 

produced by the model was necessary. For this, it was 

decided to plot specific abnormal behaviours and a 

standard one to compare with each other and comprehend 

them hence choosing the best way to form a database. A 

standard mode, a short circuit of one cell, a short circuit 

of a substring, a short circuit of two substrings and all 

three short-circuited substrings. These form a general 

perspective of a panel and carry general options that can 

happen. For shading, broader subtypes were simulated. It 

was due to having more factors that could influence this 

type of power loss. Such as the number of cells being 

shadowed, their location and the percentage of shading 

being applied. In Figure 6 can be seen a plot comparison 

between standard and short circuit behaviour. 

 
Figure 6 - Standard and Short circuit, both with an irradiance 

of 1000 W/m2 and temperature of 70ºC 

An introduction of the behaviours applied to the panel and 

their simulation characteristics are shown in Figure 7. On 

the left of the figure are visually represented the electrical 

equivalent circuits in those different conditions and on the 

right the necessary inputs to produce their respective 

simulations. 

 

 
Figure 7 - Methods applied to simulate chosen faults and visual 

representation of said faults 

Having a defined structure with all variables used stored 

was very important. It allowed to define and identify 

specific subtypes of faults; in this matter, it is presented a 

vector of the final structure containing all the parameters 

inputted and the outcome variables. As mentioned before 

the first values are the voltage and then the current from 

the I-V curve tracing, necessary to observe if anything 

appears to be out of order. Subsequently come the 

temperature, the irradiance, the voltage of maximum 

power, the current of the maximum power and the 

maximum power. Later the subtypes specific variables 

appear, the number of short circuits (Nsc), the number of 

shaded cells (Nsh) and the percentage of shade (Psh). The 

final three columns represent the output code, defining the 

behaviour. Over in Table 2, an example of a row of the 

matrix, for one panel, is shown, it is represented as a 

column since it provides a better portrayal. 

 
Table 2 - Example of a row in a database, with the number of 

components below their respective names 

 
 

After concluding the random database had better results in 

artificial neural network training as it had less issues with 

overfit, however another issue arose from the same theme. 

The number of entries in the system could cause 

overfitting. So, to understand how many entries the 

database should have the maximum number of possibilities 

were thought out, considering only one panel. In Table 3, 

it is presented all the possible cases. 
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Table 3 - Total combinations possible using the random 

database 

 
 

 

 

 

A 10000 entries database was constructed. It was decided 

to be this size due to computational time, and as can be 

seen, it is not a number that will cause overfitting for an 

ANN as it represents less than 1% of the total possible 

cases. To give an insight into the time spent on this 

process, 10000 entries took approximately 12 hours to 

complete, in a student’s laptop. However, when 

measuring in a real system, there will be oscillations in 

values that cannot occur in a simulation. To create this 

effect in the database, a random matrix, with the same size 

of the dataset, was manufactured. It had values, in 

percentage, between -5 and +5 which were multiplied 

with the dataset, causing a variation in all variables, 

creating noise in the results. After finalizing both 

matrices, the simulated and the noise were put together 

creating a 20000 matrix database. A flowchart, of all 

process behind the creation of the random database, is 

presented in Figure 10.  
 

 

 
VII. ARTIFICIAL NEURAL NETWORK DEVELOPMENT 

 
To start an ANN the inputs must be chosen, and in this 

case, there are four essential variables: the cell 

temperature, the irradiance, the voltage at maximum 

power point and the current at maximum power point. 

These are normalized for a better convergence in the 

training to the networks’ outputs. This process is made by 

dividing the input by, for the weather variables, their 

respective maximum values, for the voltage the open 

circuit value and for the current the short circuit value. For 

the hidden layer of the network, after testing exhaustively, 

the one with the best results was with one hidden layer and 

five nodes in that layer. Two datasets are tested, one 

without noise and the other one with added noise. This 

was done by increasing or decreasing five percent of the 

values on each entry. It was to create a measuring error 

threshold. The performance graphs are presented in Figure 

8 and Figure 9. In Figure 8 there is a lower error, however 

the stages of training, validation and testing do not 

converge to the same value. This shows a problem of 

overfitting. In Figure 9 the error increases compared to the 

previous, this is due to the added noise in the database. 

However, all stages converge to the same point showing 

there is no issue with overfitting. The first performance 

graph shows worse results to new inputs. 

 

 
Figure 8 - Performance graph of the 10000 database with no 

noise added 

 

 

 

 
Figure 9 - Performance graph of the 20000 database with noise 

added 

 

 
The second tool to access the correct construction of a 

well-defined network is the confusion matrix. In Figure 11 

and Figure 12 can be seen the confusion matrices for the 

network without noise and for the one with added noise, 

respectively. It shows overfitting in the no noise database 

as the test stage has better accuracy than the training stage. 

As expected, the noise database produced worse accuracy, 

however still very high, guaranteeing reliable variations of 

experiments and measurements. 
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Figure 10 - Flowchart of database creation 
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Figure 11 - Confusion matrices of all steps in a learning 

process of an ANN, in this specific case 10000 normalized 

entries with no noise added 

 
Figure 12 - Confusion matrices of all steps in a learning 

process of an ANN, in this specific case 20000 normalized 

entries with noise added 

 

 
VIII. TESTING THE ARTIFICIAL NEURAL NETWORK 

 

An outdoor experiment was tested with the known 

behaviours described in Table 4. For this test, a broad 

range of faults was tested. First every test was run five 

times, to guarantee precision and avoid errors. 

Secondly the temperature and irradiance values were 

stored. Thirdly the tests were divided in different 

categories and subcategories. Standard operation, 

without any purposely fault. Short circuit, which was 

divided into three: one cell, twenty four cells and forty 

eight cells. And finally shading which required to two 

levels of separation: first in the number of cells being 

shaded and then on the percentage of shading being 

applied. In Table 4 can be seen all the behaviours 

tested outdoor. 

 
Table 4 - Behaviours tested outdoor 

 
 

And so, an example of the results outdoor are shown 

in Figure 13 and Table 5. It demonstrates a clear I-V 

curve. 
Table 5 - Irradiances and temperatures related to Figure 

13 

 

 
Figure 13 - Healthy panel in standard operation 

 The results were inserted in the ANN and the output 

from it is presented in Figure 14. It correlates the 

known behaviour with the one outputted by the 

network. The first name tag indicates the targeted 

behaviour and the second indicates the one found by 

the model. For example, in Standard → Short circuit 

(SC) or shading (SH), the panel is in standard 

behaviour, however the model indicates a short circuit 

operation. In the graph presented, it is a defined 

behaviour when the output grants more than 50% of a 

mode. In a first look at the failure detection, caring 

only if it managed to know if the system was working 

without faults or not, it showed a performance of 95% 

efficiency. It indicated 81 correct outputs, 3 false 
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alarms and 1 unnoticed failure. From the analysis of 

the graph, the standard operating condition is confused 

with short circuit only. It is caused by a low difference 

in voltage drop, mainly in the test with only a short-

circuited cell, a decrease in 0.5 volts. There is also a 

case in the short circuit of 24 cells in a substring that 

caused an error in the classification. It chose standard 

instead of short circuit due to the claw. The one used 

to short circuit the whole substring by connecting it 

with both terminals of the bypass diode, not providing 

contact to the metal. 

In Figure 15, the I-V curves of that sample of the test 

are drawn, and it shows the inefficiency of the used 

method to cause short circuit in the blue curve, where 

it fails to represent the loss of approximately 12 volts. 

The previous analysis gathered a 73% accuracy 

however here lies an associated error from the 

simulation model and from the trained neural network 

results. Using the variables gathered in the outdoor 

results (temperature and irradiance), a simulation was 

made, and those values were inputted in the artificial 

neural network to demonstrate this propagated error. 

 

 
Figure 14 - Outdoor results after passing through the 

trained model 

In Figure 16 the results can be seen. As explained, there 

is also a percentage error in the artificial neural network 

and the simulation model which will increase the error in 

the outdoor test. In the database results, there is a clear 

area where the trained model has difficulty accessing. 

It is the short circuit boundaries. If the short circuit is 

low, it struggles to decide between standard and short 

circuit. If the short circuit is equal to a substring or 

more than one, it coincides with the shading operation. 

From a total of 85 simulated tests, the trained model 

deduced correctly 70. It portraits an accuracy of 

82,35%. In the outdoor results, a more different 

situation is met, there are more imprecise outputs. 

Standard and short circuit get mistaken between each 

other with a low-level drop of voltage. 

The measurement error rate can even mistake a short 

circuit when standard behaviour is applied. Moreover, 

for shading and a short circuit occurs the 

misinterpretation stated in the above paragraph. 

However, there is an indication in the probabilities, 

showing the feasibility of another behaviour. 

 

 

 
Figure 15 - I-V curves of a short circuit in a substring (24 

cells) of the outdoor experiments 

A total of 85 outdoor tests were performed, and from 

that sample, 62 were correctly diagnosed, giving an 

accuracy of 72,94%. A decrease in performance was 

expected, considering the measurement errors of all 

the equipment utilized.  

 

 

 
Figure 16 - Simulation results after passing through the 

trained model 

 
IX. CONCLUSIONS 

 

In this thesis, known behaviours of photovoltaic 

systems were studied, namely, the standard operating 

condition, short circuit and shading. Open circuits 

were not developed in this work as there was no way 
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of properly test them. However, this fault has a pattern 

equivalent to a high percentage of shading when the 

bypass diode activates. After studying and learning 

about those faults, a knowledge of the one diode five 

parameter model was gathered to understand the model 

used to simulate cell behaviour. Then the simulation 

model was optimized to be able to create the best 

reference values of each behaviour. First a static 

database was created, however it created overfitting in 

the artificial neural network training. A random 

database proved to be more efficient for ANN training 

as it did not overfit. Normalization of the input values 

established better results. However, only when 

normalized values were approximated to the interval 

[0;1]. Reducing the number of inputs hindered the 

convergence process in the ANN. The four inputs 

cannot be taken out, they are all essential for an 

accurate detection and diagnosis. Even when one input 

was normalized using another it proved to complicate 

the analysis of the artificial intelligence method. Many 

networks were created with different hidden layer 

nodes however the ones with five showed the best 

results. The addition of noise occurred with the 

intention of creating a threshold in the values, to create 

the measurement error threshold in the network. It 

demonstrated overall positive effects, also in removing 

the overfitting. Then the outdoor test in a photovoltaic 

panel was done and compared the accuracy of the 

trained model of the ANN in outdoor circumstances 

and the accuracy of the simulation model. The primary 

observation made was of the detection method, where 

it achieved a performance of 95%. In the diagnosis the 

accuracy was 73%. In the detection department it 

displays a very solid achievement. Regarding 

diagnosis performance, it decreased due to 

measurement errors and error propagation of all 

applied methods and techniques, however it showed 

promising results, proving it is possible and 

achievable. 

From collected results, there are improvements 

recommend such as an insertion of the topology in the 

process. Testing as a system and complement the 

process adding topology to all the steps of the method. 

Increasing the number of faults tested, with one more, 

open circuit.  If shading is identified, then it can run 

the program in different hours along the day and if it 

persists consider an open circuit. 

To guarantee reliable accuracy in other systems it 

should be tested with different panels and other system 

configurations. This can lead to improvements and 

more guarantees about this procedure.  
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